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In this paper, the hydrodynamic equations and the associated transport coefficients 
are derived for a simple binary fluid from molecular considerations. This is a generaliza- 
tion of the methods of Felderhof and Oppenheim and of Selwyn to multicomponent 
systems. A linear response formalism is used to describe the relaxation of the binary 
system from an initial nonequilibrium state. Explicit molecular expressions are given 
for the transport coefficients in terms of time correlation functions of generalized 
current densities. These densities have the useful property of not containing a conserved 
part. The correlation functions are then related to a set of phenomenological coefficients 
in the theory of nonequilibrium thermodynamics. This explicit identification enables 
one to relate the correlation functions to experimentally measured transport coefficients. 
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1. I N T R O D U C T I O N  

In  this paper ,  we will derive f rom molecu la r  cons idera t ions  the l inearized hydro -  
dynamic  equat ions  for  a two-componen t  s imple fluid and  obta in  expressions for  the 
t r anspo r t  coefficients in terms o f  t ime corre la t ion  functions.  The der ivat ion  will be an  
extension to a b ina ry  system o f  the ideas set for th  by  Fe lde rho f  and  Oppenhe im m 
and  Selwyn c2) for  a one -componen t  fluid. The  macroscopic  equat ions  will be der ived 
via  K u b o ' s  fo rmal i sm (s) for  calculat ing the l inear  response o f  the system to external  
forces. W e  will a l so  relate the t r anspor t  coefficients appear ing  in our  equat ions  to 
the phenomenolog ica l  coefficients conta ined  in expressions connect ing  the fluxes and  
forces in the  theory  o f  nonequi l ib r ium thermodynamics .  (~-6) 
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The microscopic state of a classical system of N particles with no internal degrees 
of freedom is completely given by specifying the positions and momenta of all the 
particles at time t, i.e., by specifying the system phase point X(t) = {rN(t), pZ~(t)}. On 
the other hand, the macroscopic description of the state of the system is given by a 
relatively small number of observables which are ensemble averages of a set of 
dynamical variables A~(X(t); r, t), functions of the phase point and possibly depending 
explicitly on space and time. These observables, or macroscopic variables, have the 
property that their space variations are small and their time variations are slow com- 
pared to molecular quantities. 

We shall define the correlation function ~ s  of two dynamical variables As and A s 
for a canonical ensemble by 

~ ( r ,  t; r', t') = <[A~(X(t); r, t) - -  (A~(X(t);  r, t ))]  

• [AB(X(t'); r', t') -- (AB(X(t'); r', t'))]> (1) 

The dynamical variables are assumed not to depend explicitly on time, so that 
their time dependence is given by 

.d = --{Ho , A} =- iLA (2) 

where H0 is the time-independent Hamiltonian for the system, {,} is the Poisson 
bracket, and the second equality defines the Liouville operator L. From (2), we may 
deduce that the correlation function depends only upon the time difference t -- t'. 

We will restrict our considerations to large ttuidlike systems which have no 
external fields and in which we may neglect boundary terms. Consequently, the 
correlation functions will depend upon I r -- r' [ only. This will be rigorously true in 
the thermodynamic limit (number of particles N - +  o% volume V---~ o% density 
N / V  = const). 

Since in a spatially homogeneous system the equilibrium averages of the 
dynamical variables must be independent of both r and t, 

7J~s(r -- r', t -- t') = <[A~(X(t); r) -- <A~(X))][Ae(X(t'); r') -- (A~(X))]> (3) 

The time and space transforms of (3) will be denoted by 

~ e ( k ,  co)= f ]  dt e i~  f vdr[exp( - - i k  �9 r)] ~ ( r ,  t) 

= (1/V)(A~,ko~AB_k), k =~ 0 (4) 

from which we see that, for k =75 0, 

(A~,u,oA~,-k) = (3A~,u~ 3AB,-k), k =/= 0 (5) 

where the space and time Fourier transforms are defined by 

A~,k~ = f [  d te  '~' f vdr[exp( i k ' r ) ]  A~(X(,), r) 
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and 

A~,k = fv  dr[exp(ik �9 r)] A~(X(0), r) 

The fluctuation in the dynamical variable is defined by 

3A~(X(t); r) = A~(X(t); r) -- {A~(X(t); r)) (6) 

2. L I N E A R  R E S P O N S E  T H E O R Y  A N D  T H E  H Y D R O D Y N A M I C  
M A T R I  X 

We shall now give a brief summary of the pertinent features of Kubo's 
formalism ~a) for deriving hydrodynamic equations. We assume that there exists a set 
of macroscopic variables which completely describe the state of the fluid. Each 
macroscopic variable is associated with a dynamical variable A~(X(t); r, t). Our 
purpose is to obtain the equations that describe the decay of the macroscopic variables 
from an initial nonequilibrium state. We postulate the existence of space- and time- 
dependent forces which couple to these dynamical variables to establish the initial 
nonequilibrium state. 

If  the forces are abruptly turned off, the system will decay to equilibrium. The 
forces will be eliminated during the derivation and do not appear in the final expres- 
sions. Thus, the forces serve as mathematical constructs and may or may not exist in 
reality. The fictitious forces are a useful device provided the correct macroscopic 
variables are known for the system. 

The time-dependent Hamiltonian for the system is given by 

H(t) = H o -- f vA (X; r)F~(r, t )dr  (7) 

where each force F~ couples to the dynamical variable An. We will use Einstein's 
convention of summation over repeated indices. Here, H0 is the equilibrium Hamil- 
tonian appearing in the canoncial distribution function 

= e-OH~ dX e -~H~ (8) fo 

The time-dependent distribution function for the system obeys the Liouville 
equation 

~f(t)/~t = {H(t) , f ( t )}  (9) 

In Kubo's theory/a) one computes the linear response of the system to the forces. 
To terms linear in the forces, the formal solution is given by 

d f ( t )  ~ f ( t )  - - fo  (10) 

Af( t )  ~- ~fv dr' ~f_~ dt'{exp[--iL(t -- t')]}[f0, An(X; r')] F~(r', t') (11) 

where the Liouville operator is defined by (2) and we have asserted that the system is 
in equilibrium at t = - -m.  
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As noted, the macroscopic observables are given by ensemble averages of the 
dynamical variables. We will want to consider the deviations of the macroscopic 
variables from their equilibrium values; thus, the appropriate ensemble will be 
Af(t) and we make the identification 

a~(r, t) = (A~(X; r))a,(,) 

= f drNdp u fvdr ' S_dt'A~(X;r){exp[--iL(t--t')]} 

• [A,  &(X; r')] F~(r', t') (12) 

With use of the properties (2) and (8), we have the more useful form 

t 

a~(r, t) = (1/kBT) f dr' f dt'<A.(X(t -- t'); r) A~(X, r')> F~(r', t') (13) 
V - - c o  

where the angular brackets denote an equilibrium canonical ensemble average and 
ks is Boltzmann's constant. We may take the Fourier space transform 

a~(k, t) = fv  dr[exp(--ik �9 r)] a~(r, t) 

which yields 

a~(k, t) = (1/kBTV) f dt' <A~.k(X(t -- t')) ABA(X)) F~(k, t'), k g= 0 (14) 
--~X3 

Since we will be interested in describing the relaxation of the system for t > 0 
from a nonequilibrium state, we shall assume the following time dependence for the 
forces: 

F~(k, t) : F.(k) e ~ (e --+ 0+), t ~ 0 
(15) 

= 0 ,  t > 0  

This time dependence implies that the forces are "turned on" adiabatically from 
t = --oo and "turned off" abruptly at t = 0, with the net result that the system is 
in thermal equilibrium with respect to the external forces at t = 0_. 

With the explicit form of F~ given by (15) and the assertion that the fluctuations 
become uncorrelated as t -+ 0% we may obtain from (14) the two equations 

fi~(k, co)+ = (1/k~TV)(A~.ko~A~_k) F~(k), (k 5~= 0) (16) 

and 

am(k, t = 0) = (1/kBTV)(A~,kAB_k) F~(k), (k :/: 0) (17) 

where in (16) we have taken the half-sided time transform 

0o 

fi~(k, co)+ = f dt ei~ t) 
0 

(18) 
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By eliminating the force between (16) and (17), we have the result 

as(k, co)+ = (A~,k,oA~,_k)(A~,uA,_k) -z a,(k, t = 0), (k =/= 0) (19) 

We remark in passing that when we solve for F~(k) in (17), we are in effect fulfilling 
our assertion that the forces determine the initial nonequilibrium state of the system, 
which is described by as(k, t = 0). In (19), 

(A~,kA~_k) ~= [~AkA_k)-Z]~ 

and we have a coupled set of equations for the time dependence of the macroscopic 
variables in terms of their initial values, derived under the assumption of linear 
response. 

We know the hydrodynamic equations have the form 

0a~(k, t)/Ot = --M~(k) a~(k, t) (20) 

or in transform language 

do(k, co)+ = {1/[--ico + M(k)]}~ a~(k, t = 0) (21) 

Linear response theory predicts that (19) and (21) are identical. The time behavior of 
the average of the microscopic fluctuations in the macroscopic variables in the 
equilibrium ensemble, at least in the limit of small k and co, correctly describes the 
time relaxation of the variables from an initial nonequilibrium state. This is equivalent 
to assuming Onsager's postulate. (v) Thus, we may define a new matrix M(k, co) by the 
equation 

(A~,uo~At~,_k)(AB,kA,,._k) -~ = {1/[--ico + M(k, co)]}~y, k =/= 0 (22) 

We may then demonstrate that, up to some order in k, M(k, co) will be independent 
of co and equal to M(k) in Eqs. (20) and (21). 

At this point, we make a simplification in notation. The correlation functions 
(A~A~) are elements of matrices, as is the hydrodynamic matrix M~(k). We now drop 
the explicit notation of repeated indices and indicate matrix multiplication by the 
contraction symbol (.). Furthermore, in the following, the vector notation of k will 
be suppressed when k appears as an argument of a function. Thus, (22) becomes 

(Ak~A_k) �9 ~AkA_k) -1 = {1/[--io) + M(k, co)]}, k =/= 0 (23) 

This equation is the starting point for deriving the hydrodynamic matrix M(k). 

3. D E R I V A T I O N  O F  T H E  H Y D R O D Y N A M I C  M A T R I X  I N  T E R M S  
O F  C O R R E L A T I O N  F U N C T I O N S  

To derive the hydrodynamic matrix M(k) up to the Navier-Stokes approximation 
O(k2), we will use a k-ordering procedure first suggested by Van Leeuwen ~8~ and used 
by Selwyn in deriving the generalized matrix M(k, co). ~) 
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In this method, one begins by rewriting (23) in the form 

--ioo(Ak~oA_~> 47 M(k ,  co) �9 (Ak~a_k> = (A,~A_k>, k @ 0 

and makes use of the property 

(Ak(t)A_7~'/ = - - (An( t )  A_~} 

to obtain 

(A~A_~} -- ( A ~ A _ ~ }  + M(k ,  co) �9 (AkA_~} - -  M(k,  co) �9 (A~o,A_k} = O, 

(24) 

(25) 

k~=0 
(26) 

It  may be demonstrated for the dynamical variables under consideration that 
their time dependence may be expressed in the form 

A~,k = - - ik"  J~,k (27) 

where J..k is the current corresponding to As. With this fact, (26) becomes 

- - i k .  (jkA_~} + i k .  (jT~oj-k} " ik -- M(k,  co). (A~j_~} �9 ik 

= - - M ( k ,  co). (A~A_~), k :/: 0 (28) 

Attention will be restricted to the regime where k is small but finite. We assert that 
the correlation functions may be expanded in the series 

(AkA_~) = (AkA_k} (~ 47 (A~A_k) m 47 "" (29) 

where the k dependence is denoted by the superscript, i.e., the term (AkA_k} (") = o&", 
where a is independent of k. We assume a similar expansion for M(k,  co) and the 
frequency-dependent correlation functions. When these expansions are inserted in 
(28) and powers in k collected, one finds immediately M(~ co) = O, 

- - ik"  (jI~A_~} (~ = --M(1)(k, co) �9 (AkA_I~} (~ (30) 

and 

- - i k .  (jkA_~) (1) 47 i k .  (j~o,j_~) (~ �9 ik - -  M m ( k ,  co) �9 (A~j_~) (~ �9 ik 

= --m(i)(k, w) �9 (AkA_~> (a) --  m(2)(k, co) �9 (AkA_~> (~ (31) 

It remains to solve for M(i)(k, co), the Euler matrix, and M(~)(k, co) in (30) and 
(31). To do this, we must now give explicit information about the system and the 
dynamical variables we are considering. 

4. D Y N A M I C A L  V A R I A B L E S  F O R  A B I N A R Y  S Y S T E M  

We consider a binary fluid composed of N particles of type I and M particles of 
type II. The particles interact with each other through three potentials: r denotes 
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interactions between two type I particles, Cz~ denotes interactions between two type II 
particles, and r denotes interactions between one particle of type I and one particle 
of type II. 

The potential r is a function of I ri: I = J ri -- r~ J only. The masses of type I 
and type I[ particles are denoted respectively by m I and m H . 

The dynamical variables corresponding to the macroscopic variables are given 
as follows in their space Fourier representation. 

(1) Total mass density: 

N M 
P~ = Z ml exp(--ik �9 rj) + ~ mn exp(--ik �9 r~) 

j~l c~=1 
(32) 

(2) Total momentum density: 

N M 
gk = ~ P~ exp(--ik �9 r~) q- ~ P: exp(--ik �9 r~) 

= gk '+ gH (33) 

(3) Total energy density: 

N M 

ek = }', (P:~/2mz) exp(--ik �9 r:) q- ~ (Pc~Z/2mii) exp(--ik �9 r~) 
j=l c~=l 

~ 1 ~ ~ r exp(--ik 'r~) 1 r exp(--ik �9 r:) -~- ] ~:~ 
+2 ;:8 

~,, ~ 1 ~ ~ r exp(--ik" r=) 

(4) Mass density of component I: 

(34) 

N 
P/cI = Z mI e x p ( - - i k  �9 r :)  

j=l 
(35) 

The time derivaties can be written in the form of (27). With the definitions 

[1 [g l 
P~ T% 
gk = - - ik"  

#k I Lgk J 

(36) 

the currents in their Fourier representation are as follows. 
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(1) 
(2) 

(3) 

N 

(4) 
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Mass current ---- momentum density, gk �9 

Momentum current = stress tensor, T~ : 

N M 

T~ = ~ (PjPj/rnl) exp(--ik �9 rj) -t- ~ (P~P~/mII) exp(--ik �9 r~) 
J=l ~ = 1  

1 N N  

~ r~V~]~(exp -- ik �9 rj)(l -- �89 �9 r.~ + ---) 

-~ I l l  2 ~ rB~V~ ~ (exp - - ik"  r~)(1 -- �89 re~ + "") 

N M 
r V tIII/ -- ~ / . .  ~j ~%~ texp - - ik"  rj)(1 �89 r~j -b- "") 

j 
(37) 

Energy current j~' : 

M 

(P~Pj2/2mI ~) exp(--ik" rj) + ~ (P~,P~,2/2m~I) exp(--ik �9 r~) 
j = l  a=l  

N N  M M  

+ ~ ~ (ej/2mO r exp(--ik �9 rj) + Z E (PJ2rnn) q~ exp(--ik �9 r~) 
j ~ s  ~r 

N M  N M  

@ Z Z (Pj/2rn0 ~',~ d~!'~ exp(--ik �9 U) q- Z Z (PJ2rnu) 7-J. am exp(--ik �9 r~) 
j a j a 

N N 

-- ~ Z r~(P,/Zmz) �9 V~q~,(1 -- �89 r~j + -..) exp(--ik �9 r~) 
j % s  

M M 

-- ~ ~ r~(eB/2miz) " II �9 V~B(1 -- �89 rB~ + "") exp(--ik r~) 

N M 

+ ~ ~ r~j[(P~/2mu) I7~6~ ~ (Pj/2mz) I I I  �9 -- �9 Vj~j. ](l -- ~ik" r~ q- -'.) exp(-ik �9 r~) 
j 

(38) 
Mass current of component I ~ momentum density of component I, gfl: 

N 

gfl = ~ Pj exp(--ik �9 rj) (39) 

5. D E R I V A T I O N  OF T H E  EULER M A T R I X  MO)(k) 

The Euler matrix is obtained from (30). We see immediately that it is independent 
of w and may be written as 

Mm(k) = ik" <]ka_~) (~ ' (A~A_k) (0)-1 (40) 



Molecular Derivation of the Hydrodynamic Equations for a Binary Fluid t57 

Consider each matrix on the r.h.s, of  (40) separately. For  our set of dynamical 
variables, we have 

[ -s 0 (pke-k) (OkO[k} J 
0 (g~g_~} 0 0 

(AkA_k) = (41) 
(ekP-k) 0 (eke_~) (ekp[k) 

0 fpeI e_~) ~p~zlpIlc ) 

where because of symmetry g~ is uncoupled from the other variables. This matrix 
may easily be shown to be symmetric. 

In order to proceed, we must calculate 

(1/V)(A.,kAo,_~) (~ = lim (1/V)(A~,kA~_k) 
k~0  

(42) 

The bracket average means a canonical average in the thermodynamic limit. Thus, 
(42) states that the thermodynamic limit is taken before k goes to zero. For  small 
k, k < g2 -l/a, where D~/a is a macroscopic length, the average will become independent 
of  k and equal to the average of the fluctuations of A~ and Ao in a grand canonical 
ensemble in a volume s 

- - X 2  
lim (1/V)(A~,kAtL_k) = ( l / g 2 )  zJA~zJAo ( 4 3 )  
k~0  

The pertinent ensemble is the grand canonical ensemble as a consequence of  the 
order of  taking the limits. We compute the fluctuations of the macroscopic variables 
in the grand canonical ensemble in order to obtain their relationship to thermo- 
dynamic derivatives. The density fluctuations are 

- - 4 2  
(1/kBTV)(pkp_~) (~ = (1/DkBT) A MA M = P(aP/aP)T.. (44) 

where M is the total mass in g2 and we have defined 

p = M/g2 and /~ = [(/h/m1) --  (/xIz/rnii)l; 

(1/kaTV)(p~p[~) (~ = (llg2k~T) A M A ~  = p(e/lep)~.. (45) 

where Oz = c/g2 and c is the total mass of component I in the volume g2; and 

(I/kBTV)(p~xp[~) C~ = ( 1 / g 2 k B T ) ~  = (~pZ/O/~)T,o + O'(ep'/~p)r. ~ (46) 

The energy fluctuations are 

-D 
( llkBTV)(p~e_~} (o) = ( llf2k~T) A MA E = p(~e/Op)r,. (47) 
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where E is the total energy in the volume s and e = E/s and 

(1/kBTV)<p~e_~} (~ = 0/~gk, T)AEAc = (Se/8tz)~,r § p~(Oe/Op)r.. (48) 

The energy-energy fluctuation may easily be shown to be 

- - t 2  
(1/kBTV)(e~e_~) (~ = (1/t?kBT) A E A E  = T(Oe/OT)...i~ + tz;~p(�9 

@ tz[@e/~tz)~),r @ (Oe/~p)T,up I] (49) 

where/z~z = [ / t~ i i /miz  ] .  Extensive use o f  thermodynamic  identities shows 
- - . Q  

(l f l2kBT) A E A E  = (Se/Sp~)r,o(ee/~tz)r,p + p(ee/Op)r,.(Se/Sp)r, . + T(Se/ST)o,o~ (50) 

Alternatively, these fluctuations may  be evaluated by the method of  thermodynamic  
fluctuation theory described by Landau  and Lifshitz, m al though care must  be  taken 
when using this procedure2 

Finally, we may compute  the total m o m e n t u m  correlation function f rom (33), 

(1/keTV)(gkg_~} = pl (51) 

which is independent of  k and where I is the unit dyadic. 
This completes the calculation of  the (AkA_k} (~ matrix, which is summarized in 

matrix form as follows: 

1 
kBTV  (AkA-~}l~ 

- 8 p  

0 

De 

8p / r .  

8e ( 0p I ] 

pl 0 0 

8e 8e 8e ~e 8e 8e 
o § 

8e § 

8e 8e [ 8p I ] 
0 (--~)T~o -~- PI(~)TI ~ DI (~)T t~-~- \  ~L ]T~ 

(52) 
What  we require in solving for M m ( k )  in (40) is the inverse matrix [(AkA_~)(~ -1. 

This may be obtained f rom (52) in several s tandard ways, all o f  which require tedious 
calculations. 

3 When using thermodynamic fluctuation theory, a reference extensive variable must be held fixed. 
Fixed volume corresponds to the grand canonical ensemble, while fixed total mass or number 
corresponds to the isothermal-isobaric ensemble. Total energy fluctuations are not the same for 
these two cases (for one- or two-component systems). However, fluctuations in energy density 
(energy per unit volume) are the same in the two ensembles. These statements may easily be verified 
for a one-component system. 
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The final result is given by the following matrix: 

- 1 a T  l a p  

[epi  - 
\ 8p ] T,  

= 0 

1 8 T  

1 8T (~e) @ 8/x 
\6qp oIr 

1 8 T  

11 0 
P 

1 aT  
o 7 ( w ) o ;  

1 8T 

1 aT (8e~ + a/~ 

0 

1 8T 

1 aT /'8e~ • at* 

v (v)oo,v,o ' 
(53) 

We now wish to compute the matrix (jkA_k) (~ which appears in (40) to complete 
the task of solving for M(1)(k).  For our set of  dynamical variables, we may immediately 
write down 

( 1 / k ,  T V )  i k  " (jkA_~) (~ 

0 

(TR;p_/c) (0) 
= ( 1 / k B T V ) i k .  

0 

0 

(gkg_~) (~ 0 0 -I 

_ ~Tkp_lc/  0 (TT~ e ]c)(O) ..I \ (0)  

(j~g_k} (~ 0 0 

(gflg_k) (~ 0 0 

(54) 

where the zeros are again due to symmetry in momentum in the correlation functions. 
I t  is easy to demonstrate that the matrix is symmetric. In order to do this, we make use 
of  the properties (27) and (25) and also note that the elements of  the matrix in (54) 
are even in k. Thus, we may write the successive equations for the ~/3 component  of  
the matrix in (54): 

ik �9 (jk~A_~,~) (~ = - -  (A~,~A_k,~) (~ = (A~,~A_k,~) (~ 

= (Ak,~j_k,~) I~ �9 ik = (A_~,,~j~,~) (~ �9 ik 

= i k .  (jk,~A_~,.) (~ (55) 

which establishes the result. Therefore, we have 

( 1 / k ~ T V ) i k "  (rkp_~) (~ = ( 1 / k s T V ) i k "  (gkg-k) (~ 

= iko  (56) 
and 

( 1 / k ~ T V ) i k "  (rkr_k nI  )(0)  = ( I / k ,  T V ) i k .  (gk~g_k }(o) 

= ikp  I (57) 

82z/3/2-S 
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Now it is possible to show that m 

1 �9 ] 
--V ik �9 (a'~e_~} (~ �9 ik = ik �9 kk-~o[lim --1V (ekk k zT-7~ �9 k} . ik ( s s )  

Since the pressure p is proportional to minus the diagonal elements of the stress 
.Q 

tensor, the term in brackets is AEAp , so that we have the result 

(1/kBTV)ik " (Tke_k} (~ = ik(l/kBT) AEAp ~ 

= ik(e -k p) (59) 

Thus, we have 

(1/k~TV)ik �9 (-r~e_~} (~ = (1/k, TV)ik" (js (~ 

= ik(e + p (60) 

Therefore, we may write out the matrix (54) as 

0 ikp 0 0 ] 
0 ik(e -k- p) ikp z 

(1/k~TV)ik " (jkA_k} (~ = ikp ik(e -q- p) 0 (61) 

We may now compute Ma)(k) as given in (40) by using our expressions in (53) 
and (61). The final result is given by 

[ ik 0 
M m ( k  ) ---_ ik(~p p)~z 0 ik(~p/~e)oo~ ik(~p pZ)oe 

ik(e + p)/p 0 
ik(p~/p) 0 

(62) 

The macroscopic equations as defined by (20) which correspond to the M(Z)(k) 
matrix in (62) are the Euler equations for an ideal fluid, i.e., no dissipative forces in 
the fluid. These equations may be written in space and time language as 

o ~ / e t  = - v .  

(63) 

ao/at = - [ ( e  + p)lp] v .  

epI/et = - ( p ' / p )  v .  

where the macroscopic variables as(r, t) are simply identified as ~ and the space and 
time dependence has been suppressed. This concludes our derivation of the Euler 
matrix. We now want to derive a similar expression for M(~)(k, co) from the expressions 
in (31). 
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6. D E R I V A T I O N  OF T H E  NAVIER-STOKES M A T R I X  

The matrix M(~)(k)  will be obtained f rom (31). The first step is to note that  for  
l a nonnegative integer, 

<AkA-~> (2~+1) = <fi~A_k> (2z+1) = 0 (64) 

The terms in (41) and (54) involve even-rank tensors only. Since the averages o f  even- 
rank tensors are even functions o f  k, the odd-order  components  o f  the average o f  an 
even-rank tensor are zero. 

I t  is convenient to introduce (x~ the "dissipative currents" defined by the relations 

i k  �9 H~ = i k  �9 j~ - -  M(1)(k)  A~ 

i k  �9 H~,~ = i k  �9 jk,o - -  M(1)(k)  Aie~ 

(65) 

(66) 

Hie : 

By using our  expressions (36) and (62), we have the following explicit fo rm for  

[ ~ I = Tie - -  [(@/~P)~o I Pk + (@/~e)ooz ek + (t3P/~P~)o, Pkl] I 

J~q / jie~ - -  [(e -f- p ) / p ] ~  

n~ZJ ~ie'  - ( p I / p ) g k  

(67) 

where we have identified the "dissipative energy current"  as the heat  flux jk q. 
Note  that  we may rewrite (30) as 

0 = i k .  (HkA_~> (~ (68) 

By using (64) and (67), we may  now rewrite (31) in the more  compact  form 

M(2)(k ,  ( o ) .  (AkA_~)(o) = - - i k .  (Hiej_~) (~ �9 ik (69) 

I t  will prove convenient to express (69) in a more  symmetric form. 
Performing an integration by parts, using (68), (25), and (27), we may  write the 

successive equations 

--(ioJ) i k  �9 (Hko~A_~> (~ = ik �9 (H~A_~> (~ + ik �9 (I:tie~oA_ie> (~ 

= ik �9 (I:tk,oA_k> (~ 

= - - ik  �9 <Hko~A k> l~ 

= - - i k  �9 ( H k j k  �9 jk> (~ = 0 

o r  

i k .  (HI~A_k} (~ : 0 (70) 
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This implies that the "dissipative currents" contain no conserved parts, i.e., they 
are or thogonal  to the conserved variables o f  the system. F r o m  the definition of  the 
Hk~o, we see that  this orthogonali ty property is not  possessed by the jko~ �9 We will 
shortly make use o f  this impor tant  distinction, first pointed out  by Mori,(L ~~ in our  
definitions of  the t ransport  coefficients. 

F rom (65), we may write 

ik " (Hk~H_~> (~ �9 ik = ik �9 (H~j_k> (~ �9 ik - -  ik �9 (H~o~A_~> (~ �9 Mint (k)  

= ik �9 ( H k j _ ~ )  (~ �9 ik (71) 

where we have noted in Mint(k) the fact that  we are really dealing with matrices o f  
the correlation functions and need the transpose of  M(1)(k). Thus, using (71), we may  
rewrite (69) in the desired form 

M(~)(k, oJ) �9 (A~A_TJ ~ = - - i k  �9 ( H ~ H _ k )  (~ " ik (72) 

We note that 

H ~ = 0 ( 7 3 )  k~o ~ n k ~  

and,  due to symmetry,  

Hg iq ~(o) •H g 14o ~ ~(o) = <jq Hg >(o) "'kcoa--lc/ "~ " ko~--le / ko) --k 

= (H~IoHg_k>(~ = 0 

We may demonstrate that  

(74) 

i k  �9 (Ho~  iq ,~(o). i k  = i k  �9 ( i  ~ l-l~z ,~(o). i k  (75) 

f rom space invariance and symmetry properties o f  the correlation functions in time, 
Eq. (25). 

Standard thermodynamic  manipulat ions may  be used to show the following 
equalities: 

1 ~ T  
(76) 

1 ~ T  ~e  ~/~ 

(~tz/T~ 1 ~T ~e 
T \  ~pI ]pe T ( ~ - i  )p e ( -~ I  )oT ~- (78) 

These equalities are used to t ransform the bo t tom row in the [(AkA_e)(~ -1 
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matrix (53). Thus, we may now write down the result for M(2)(k, co), obtained by 
solving (72) with the information in (73)-(75), as follows: 

--(k, TV)M(Z)(k, co) 

0 0 0 0 - 

0 _1 ik" ~3~ �9 ik 0 0 
P 

[ + (  ST]  ik" 1 ( ST]  ik 1 ST 
\ - ~p  ]~,z ~2"ik I--T- \ ~ ] o o I  " ~ ' i k  [--~- (-~'-pi) e ik '~2  "ik 

0 

~I~/T~ " "ik] 4-T(~T)e f fk '~B3"ik  ] 4- T(~-eT)oo/k'f~a'ik ] 4- T(-~p~ )o:k.25 3 

[ + (  ~T~ ik �9 \-~-p ] p  "~3 ik 

+ ;k +  ( oilik ik] 

+ ST . 

/8I~/T~ " "ik] + T (-~-pi)ofk "~4 

where 

(79) 

~ = / H  g Hg }(o) ~2 : ~iq iq ~(o) 
\ 7r --k ' 

~3 a = f l q  H p  I ~(0) ~ 4  = ( H o I  H p I  ">(0) 
\ , J k o g ~ _ k  / , \ ~ - k o ) ~ _ k /  

We see from (79) or (72) that the frequency dependence of the m(2)(k, co) matrix 
enters through the current-current correlation functions only. We assert that the 
time-dependent correlation functions <Hk(t)H_7~> decay on a molecular time scale 
which is much more rapid than the hydrodynamic time scale of interest, i.e., -r,~ ~ ~'1~. 
Since we will be interested in frequencies O(1/~-~), the frequency dependence of the 
(Hko, H_~>, which enters on a scale to~-,, ~ 1, is not of interest. This permits us to 
take the limit co--+ 0 in the <Hk~,H_7~> without any danger of losing information 
which is of interest in the hydrodynamic regime. Thus, the frequency dependence of 
M(2)(k, co) may be ignored for our considerations and M(~)(k, co) becomes simply the 
frequency-independent matrix M~)(k). As we mentioned earlier, the Hk~ have no 
conserved parts. Therefore, in the limit co -+ 0, the <Hk~H_k> (~ contain no divergent 
terms. This is not true for (j~j_~>(0) since in the limit co --* 0 the correlation functions 
contain an imaginary divergent part which goes as 1/ito. This can be seen from (70) if 
we replace H by j in the equations. This divergent part would necessitate taking the 
real part of (j~j_k> (~ to obtain a well-behaved limit. This problem is completely 
avoided by considering the "dissipative-current" correlation functions. 

The correlation functions in (79) may be simplified to expressions involving only 
the components of the currents. 
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If  one takes into account the isotropy of the fluid and chooses k to lie along the ~a 
direction, it is easy to show that 

�9 �9 ~ ~ ~ ' H  g H g  , ~ ( o ) ~  ~ i k  ",''k,~''-k,'/l"la I-lg \(o) i k  = - - k 2 ( < T k o J , 3 1 T k , 1 3 > ( O ) [ E I E l ' @  ~ 2 E 2 ] - q  - \ k~o,33 --7c,33 / 3 3" 

i k  �9  H oz)~o) . i k  = - - k 2 ( i  q H o' ){o) 
\ J k o ~  - - k  J k o ~ , 3  --]~,3 

i k  �9 ( H  ~ H ~ ~(o) . i k  = - - k2 /H~ ~ H p ~(o~ \ k ~  --1r \ lc~,3 --k~3 / 

and finally 

i k  �9 (|q ]q )(o) . i k  =- - - k  2/r iq \(o) 
~kr --7C \ Jkc%3J- -k~3  / 

Here, (~1, ~ ,  ~a) are Cartesian unit vectors. Using these results, we will define the 
transport coefficients by the following expressions. 

The coefficient of shear viscosity ~7 is defined by 

~1 = lim lim (1 /k ,  TV)( ' r l~  3z~-_~ ~3) (80) 
r k ~ 0  ' ' 

The coefficient of longitudinal viscosity 8, which defines the coefficient of bulk 
viscosity ~, is defined by 

= lim lim (1 /p)(1/k ,  TV)(H~,,33H~_k,33 ) (81) 
~o-*0 k-~0 

The coefficient of thermal conductivity K is defined by 

K = lira lim (1/T)(1/kBTV)(jgo,,ajq~ 3) (82) 
w--)O k-~0  --  , 

The coefficient of thermal diffusion DT is given by 

O T = lim lim ( 1 / kBTV) ( j ~  ~ 8Ho!~ 3) (83) 
o ~ 0  k-~0 , - , 

The coefficient of diffusion D is given by 

, OI  O I D = lim hm (1/k~TV)(H; a H .  a) (84) 
oJ-~0 k -~0  tc~o, - ~ ,  

The explicit form of these transport coefficients may be obtained from the expres- 
sions for the dissipative currents in (67). As an example, the diffusion coefficient is 
given by 

co 

D -~ lim lira ( 1 / k z T V )  dt e~*({g~ z(t) -- (p~/p) g~,3(t)}{g_~,~ -- (pZ/p) g_~ a}) 
o ~ 0  k ~ 0  0 ' 

where g~ and g~ are defined by (33). Note that the limits in these time correlation 
function formulas must be taken in the order indicated. In the next section, we will 
relate the transport coefficients ~, D T ,  and D to the phenomonological equations of 
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nonequilibrium thermodynamics. It follows from these definitions that M(2)(k) 
[Eq. (79)] takes the form of (85). 

The total hydrodynamic matrix up to O(k~), the Navier-Stokes matrix, is given 
by adding Mm(k)  and M(2)(k). Thus, the set of hydrodynamic equations implied 
by (62) and (85) is obtained by inverting (21). The result is 

a ~ / ~ t = - v . S  

a S / a t  = - @ p / a p ) e o  I v f i  - (ap/ae)oo, V~ -- (ap/ap~)o" vfiz 

+ (~/p) v=s + [(~v + 0/p] v v .  S 

MI2>(k) = 
- 0 0 0 0 

aT aT 

o 

47 T(~T) oIDT ] 47 T(~eT)ooIDT ] 47 T(~TI) DT] 

+ ,oi 

at 

(@)poi k2 (~I)o?T 

(85) 
aT aT ~T a__~at = -- ,(e 47p Pl/ V'S 47/t7 [(--~ )eOi ~72p 47 (--~e)oo I ~72e 47 (-~i)oe ~72~i] 

+ DT ,a.lr ,  \~p'-~ ]eoi V2P 47 T (~eT)ool V2e 47 T t~)oe V2P' ] 
(86) 

P~ V '$47@7-  aT aT aT 

+ D [7- (a~/r~ (a~/T~ (at,/T~ \ ~p ]ox V2t5 47 T V~O 47 T V2fi I] 
k ~e ]oo~ \ ~pi ]or 

a s  

These equations may be contracted and written in more conventional notation 

a~/at = - v . S 

aS~at = - v p  + (n/t,) Wg + [(1,7 + 0/p] v v .  S 

eolat = - [(e 47 p)lp] v . S 47 KV"T 47 DTTV~[tx/T] 

a~,/at =- - ( p , l p )  v . S § ( D r ~ T ) V 2 T  + T D V 2 ~ / T ]  (86') 
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This completes the derivation of the hydrodynamic equations up to the Navier- 
Stokes approximation and identification of the transport coefficients in terms of time 
correlation functions. 

The remaining task is to show how these particular transport coefficients are 
related to phenomenological coefficients in the theory of nonequilibrium thermo- 
dynamics. 

7. C O M P A R I S O N  OF • DT, A N D  D W I T H  T H E  
P H E N O M E N O L O G I C A L  COEFFIC IENTS 

In this section, we will discuss the various definitions for the transport coefficients 
as they appear in Refs. [4-6]. Then we will be able to relate our definitions for K, D r ,  
and D to a specific thermodynamic system. 

In the following, we will make extensive use of certain thermodynamic fluxes 
which must be carefully defined: 

(1) The diffusion current density ji of component i relative to the local center of 
mass is defined by 

ji = pi(Vi -- V) (87) 

where V is the velocity of the local center of mass; Vi is the local mean velocity of 
component i, i.e., the average velocity, with respect to the external coordinate system, 
of the molecules of i in a microscopically large, macroscopically small region of the 
fluid; and pi is the local mass density of component i. 

(2) The energy current consists of two parts, the convection current, due to the 
bulk flow of the fluid, and the conduction current JE, which includes energy flow due 
to diffusion and to heat flow. There exists no unique way of dividing je into a diffusive 
term and pure conduction or heat flow term. Consequently, we define two heat fluxes 
in the following way. 

(3) The conduction current for pure heat flow q' based on the first law of 
thermodynamics is defined by the relation 

= q' + Z E+ (88) 
2; 

where El is the partial specific energy El = (eE/~m~)r~,%, and the sum is over all 
components of the system. 

(4) The heat flux q based on the second law is defined by the relation 

jE = q + ~ Hiji (89) 
i 

where Hi is the partial specific enthalpy. At this point, we should point out that je 
in (88) corresponds to J~, the ""heat flux," in deGroot and Mazur's I~ (DM) notation, 
and q in (89) corresponds in DM notation to Jq,, the "reduced heat flow." The heat 
flow usually measured experimentally (5) is JE. Comparing the notation above with 
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that of Landau and Lifshitz (61 (LL), we see that j~ corresponds to q(LL) and Ji cor- 
responds to i(LL), where Jz is the diffusion current density for component [. Due to 
this confusing multiplicity of notation, we will stick to the quantities introduced 
above. 

We may write the phenomenological equations for the fluxes in a binary system 
in the form 

--jL = L00V(ln T) + LolTV(t~/T ) (90) 

--Ji = L01V( In T) + LnTV( I~ /T  ) (91) 

where/z is the chemical potential defined in Section 5. In the appendix, the hydro- 
dynamic equations (86') are written in terms ofjE and Jz �9 A comparison of (A.7) and 
(A.8) with (90) and (91) leads to the following relations between our transport coeffi- 
cients and the phenomenological coefficients: 

K = Loo/T (92) 

DT = L01 (93) 

D = Lll (94) 

The barycentric diffusion coefficient DB is determined at constant T and p. From (91), 
we see that D~ is 

DB = D(Ol~/~pI)r,~ 

The situation with regard to thermal conduction is more complicated since the heat 
flux may be measured in a variety of ways, e.g., relative to uniform p~ or relative to 
Jx = 0. If  the "thermal conductivity" A T is defined by 

- - j z  = AT VT,  JI = 0, 

we find 

)t~ = K --  (DT2/TD) 

The different possible conventions are discussed in beautiful detail by deGroot and 
nazur.r 5~ 

8. D I S C U S S I O N  

In this paper, we have derived the hydrodynamic equations for a binary system 
from molecular considerations and found expressions for the associated transport 
coefficients. The method used here has been used previously to derive equations for a 
simple one-component fluid. (1,2) The present work has shown the generality of  the 
method in that it may be extended to a multicomponent system. 

Explicit expressions have been given for the transport coefficients in terms of 
time-dependent correlation functions of generalized current densities. We have 
related these correlation functions to a set of phenomenological coefficients in the 
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theory of nonequilibrium thermodynamics. This explicit identification enables one to 
relate the correlation functions to experimentally measured transport coefficients. 

Our results may be compared most easily with those of Mori I1~ and Kirkwood 
and Fitts/TM Kirkwood and Fitts' results are derived for the set of phenomenological 
equations we considered in (90) and (91). Their expressions for the time-dependent 
correlation functions for •, D, and Dr  agree in form with ours except that they have 
not gone to Fourier k-space. Our results also agree with an early quantum mechanical 
derivation by Mori. (1~ In a later paper, Mori ~~ carried out a projection operator 
derivation of the macroscopic equations starting from the equations of motion for the 
dynamical variables. His expressions for the transport coefficients are in terms of the 
dissipative current densities so that he has no divergent imaginary part. His dissi- 
pative currents and correlation function expressions are identical to those obtained 
in this work. There is an important difference between Mori's derivation {a~ and the 
derivation presented here. Mori makes use of the device of constrained local non- 
equilibrium states to describe the relation. The derivation presented here avoids the 
local equilibrium assumption. In the low-k-limit description of relaxation, the use of 
local equilibrium may presumably be justified and indeed we find our results in 
agreement with those of Mori. However, if one wishes to extend the hydrodynamic 
description to higher k to describe, for example, the results of light scattering experi- 
ments, ~3) the assumption of local equilibrium may not be satisfactory. The methods 
we use here may be extended to higher k, as has been done by Selwyn 12} for a one- 
component system. 

Thus, we see that a variety of  techniques have been employed to arrive at the 
same or nearly the same results. The technique employed in this work seems to have 
certain advantages in that the method is general enough to obtain higher-order terms 
in the hydrodynamic matrix and the divergence problems which frequently occur in 
other methods are banished by the natural consequences of the dissipative current 
densities used in the correlation functions. 

A P P E N D I X :  H Y D R O D Y N A M I C  E Q U A T I O N S  EXPRESSED IN  TERMS 
OF T H E  T H E R M O D Y N A M I C  FLUXES 

We will now write the hydrodynamic equations in (86') in another form in 
which we introduce explicitly the diffusion current Jz defined by (87) and the energy 
conduction current jE also defined in Section 7. Our notation will correspond to that 
used by Fitts.(4~ 

The energy transport equation and the equation of continuity for component I 
may be written in the well-known forms 

{eb(u  + -~V~)l/et} + v -  [p(v + }v~) Vl = v .  ( v .  c,) - v .  jr (A.1) 

(epI/et)  + v .  (p~v~) = 0 (A.2) 

where U is the specific internal energy, V is the velocity of the local center of mass, 
V~ is the local mean velocity of component I, and e is the stress tensor, which may be 
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written in terms of  the equilibrium hydrostatic pressure p and the viscosity tensor cr' 
in the form 

a = --pl  -k or' (A.3) 

where I is the unit dyadic. 
The term in (A.1) involving cr may be expressed in the fo rm 

V .  (V . a )  = - - V .  (pV) q- V .  (V .  o ' )  (A.4) 

We are interested only in the linearized forms of  (A. 1) and (A.2). Thus, making 
use o f  the definition (87) for  the diffusion current density Jz, we have the set 
o f  linearized equations 

~e/~t = --[(e  -1- p)/p] V- g - -  7 .  Je (A.5) 

and 

~pi/~ t = _(p i /p )  V . g  - -  V . j i  (A.6) 

where we have introduced the total energy density e, defined in (47), and the total 
momen tum density g. 

I f  we compare  (A.5) and (A.6) to the corresponding equations in (86'), we have 
the following identifications: 

-- je  = K V T  + DTT o V(t~/T ) (A.7) 

--Ji = (Dr~To) V T  q- DToV(I~/T ) (A.8) 

where To denotes the equilibrium temperature.  
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